
  

WHY DATABASE PROJECTS
CAN’T LEAVE LICENSES ALONE

PLAINTIFF(s) }
Josh Berkus } Case No.
Red Hat Inc. }

} State of the Source
vs } conference 2020

}
DEFENDANT(s) }

MySQL, Ingres, }
Firebird, Redis,
MongoDB, et al.



  

me
*PostgreSQL 1998-2016
*Greenplum 2006-2007
*MySQL 2008
*CitusDB 2011-2016
*OSI License-Review 2004-2020



  

dateline 2018 ...



  



  



  



  



  PostgreSQL developer photo by Oleg Bartunov.
Monty Widenus photo from Wikipeda, CC-by-SA3.0



  

database companies
have never been able

to resist messing around
with licenses 



  

or:
databases:

making
bad licensing decisions

since 2000



  

first, let’s talk 
about normal



  

develop in
private,

proprietary

launch project,
choose popular 

license

build
community

get acquired,
modify
license

upgrade to
license 2.0



  

license stability
is good



  

licenses are a 
social and financial
as well as a legal

convention



  

good license hygene
1. use a popular license
2. change it as little as possible
3. socialize each change well in 

advance
4. abort license changes if harmful



  licensed clipart, usable only in redistributions 
of this presentation



  

change
driver
license

develop in
private
as fork

launch
project under
two licenses

write own
(unapproved)

license

own license
2.0

get acquired
relicense

everything

revert to
popular
license

proprietary
enterprise
features

give up
make it all
proprietary



  



  

… not originally OSS
*1995-1999: “no commercial use” 

license
– MySQL was shareware
– allegedly had code from mSQL 

(also shareware)



  

2000: goes open source
*database engine: GPL 2.0
*database client: LGPL



  

… still shareware?

“Please note that the General Public License can be 
restrictive, so if it doesn't meet your needs, you are 
better served by our Commercial License”



  

2004: change license
*database engine: GPL 2.0
*database client: GPL 2.0



  

2005: sturm and drang
*database engine: GPL 2.0
*database client: GPL 2.0
*add Enterprise Edition
*add “FOSS exception”
*community manager quits



  



  



  

INGRES: early years
*1974-1980: UC Berkeley
*1980-1990: RTI/Ingres Corp.
*1990-1994: ASK Inc.
*1994-2004: Computer Associates 

(CA)



  

2004: open source
*Released under “CA-TOSL” license
*Apache/Mozilla-ish but different

– approved by OSI
– Interfered with recruiting users, developers



  

2005: sold
*Back to Ingres Corp.

– … a different Ingres Corp.



  

2006: re-license
*under GPL 2.0



  

2006: re-license
*under GPL 2.0



  

2010+: proprietary decline
*2010: last open source release
*2017: becomes Actian X, no more 

OSS



  



  



  



  

2000: open source release
* Interbase released as “Firebird” DB
*2 licenses:

– IPL: hacked version of MPL
– IDPL: hacked version of MPL

*Neither approved by OSI



  

2000: open source release
* Interbase released as “Firebird” DB
*2 licenses:

– IPL: hacked version of MPL
– IDPL: hacked version of MPL

*Neither approved by OSI



  



  

2009: released
*under AGPLv3 license
*controversial

– AGPL “network” provisions
– AGPL + CLA = non-commercial?



  

2017: IPO
*highly $$$uccessful
*$13B cap  pressure to grow →

revenue



  



  

2018: SSPL
*New license
*MongoDB released under SSPL
*Huge extension to Copyleft

– Months of debate on License-Review



  

2019: withdrawn
withdraws SSPL from OSI 
consideration, but …

MongoDB still being 
released under the SSPL



  



  

2009: released!
*Under BSD(3) license
*created by Salvatore, working for 

VMware
– not commercialized



  

2015: Redis Labs
*new startup hires Salvatore
* “enterprise” features

– some Apache
– some AGPLv3



  



  

2018: commons clause
*rider on Apache license
*strict non-commercial restriction



  

2018: commons clause
*rider on Apache license
*strict non-commercial restriction

      SHAREWARE!



  



  



  



  

1.



  

1.



  

2. DB Years to Exit

Hortonworks 2

Cloudera 9

MongoDB 10

Greenplum 5

Citus 8

EnterpriseDB 16

Membase/Couchbase 11

Elastic 10



  

3.

SQL



  

3. SQL
* international standard
*commodifies databases
* “NoSQL” DBs pressured to 

commodify
– GQL
– GraphQL



  

commodification
=

no “stickiness”



  

next license kerfuffle ...



  

… it’s just databases
doing what they do



  

contact & licensing

@fuzzychef
jberkus.github.io
josh@berkus.org

This overall presentation is copyright 2020 Josh Berkus, 
licensed CC Share-Alike 4.0

Text of clipped articles and licenses are copyright their 
original authors, under various terms.


